まずは確率過程のおはなし

- ・確率過程とはある \underline{t} 期の値($\underline{X}_{\underline{t}}$)が確率的に決まるとき \underline{X} の集合を確率過程と言う $\underline{\ }$ 位率変数
- ・離散時間の確率過程よ連続時間の確率過程がある
- 例)ランダムウォーク:硬貨を投げて表が出たら+1、裏が出たら-1をとる場合現在の点数(\mathbf{Z})の集合

連続的に観測した気温連続的に観測した株価

○確率過程の性質

マルコフ過程: X_{t+1} の値は過去の履歴によらず現時点の値(X_{t})にのみ影響をうける 二項ツリーをみるとわかりやすい

マルチンゲール:確率変数の期待値(平均値)は現時点(初期値)の期待値と等しい

$$E(X_t) = x$$
、 $X_{t+1} = x \pm a$ で確率 $\frac{1}{2}$ であるならば $E[X_{t+1}] = x$

次に確率過程の代表例、ランダムウォークについて

いきなり連続的な株価の確率過程を考えるのではなく、一般的な確率過程で株価の動きを表せられないかを考える

時点 t_0 、 t_1 、 t_2 、 t_3 ··· t_{n-1} 、 t_n のときそれぞれ 時系列 Z (t_0)、Z (t_1)、Z (t_2)、Z (t_3) ··· Z (t_1) に対応。

上図のランダムウォーク Z_t (離散的) は期間を 1 0 0 分割したものだが Δ $t \to 0$ にすると、ランダムウォーク Z_t (連続的)になる

::ランダムウォークの極限はウィーナー過程(ブラウン運動)

次のような性質を満たすとき、ランダムウォークはウィーナー過程と呼ばれる

- 1. 確率1 (100%) でZ (t_0) = 0
- 2. 時系列の変化量 ΔZ (Z (t) -Z (s)) は (s<t) 平均0、分散 t-s= Δt をとる正規分布に従う
- 3. Z_0 、 Z_1 - Z_0 、 Z_2 - Z_1 、 Z_3 - Z_2 …はそれぞれ独立増分(マルコフ性)で、定常増分
- 4. tに関する連続関数である

1~4よりウィーナー過程の性質は

- ・増分の分布
- マルコフ性
- ・マルチンゲール性 ←正規分布に従う
- ・微分不可能性 などがあげられる

連続なのになぜ微分不可能?

証明するのは難しいので直感的に説明すると、微分の定義に従って導関数を求めると不定形になってしま うためである

つまり、
$$\lim_{h\to 0} \frac{B_{t+h}-B_t}{h}$$
が存在しないことを示す

 $B_{t+h} - B_t$ の分布 = B_h の分布 = N(0,h)

したがって、 $B_{t+h}-B_{t}$ の標準偏差は \sqrt{h} であるから $B_{t+h}-B_{t}$ は $O(\sqrt{h})$ 程度の増加量である

よって、

$$\frac{B_{t+h} - B_t}{h} = \frac{O(\sqrt{h})}{h} = O(\frac{1}{\sqrt{h}}) \to \infty \qquad h \to 0$$

ここでは ΔZ はN(O、 Δ t)の正規分布に従い標準正規分布、N(O, 1)に $\sqrt{\Delta}$ t 倍したものなので

$$\Delta Z \sim \sqrt{\Delta t} \cdot N(0, 1)$$
 と表せる

このウィーナー過程を数式の形で一般化させると

 $\Delta t \rightarrow 0$ のとき一般化したウィーナー過程は

 $dX = \alpha \cdot dt + b \cdot dZ$

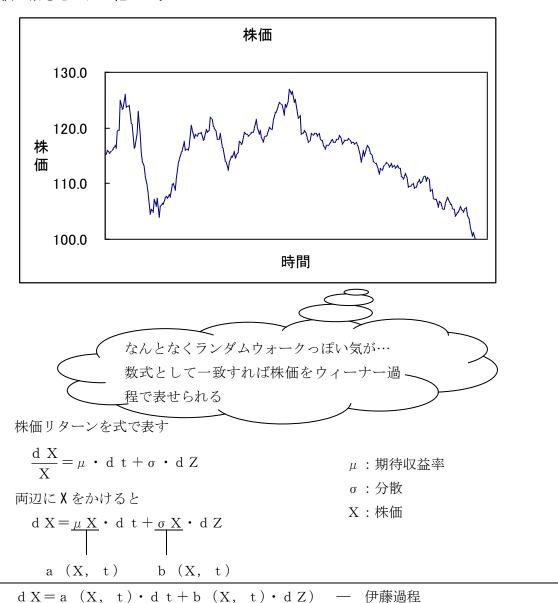
Xはウィーナー過程に従っているので

ΔX は平均 $\alpha \cdot \Delta t$ 、分散 (b · $\sqrt{\Delta t}$) ²の正規分布に従っている

ウィーナー過程を一般化するのは 1 次関数 (y = c x + e) を一般化するのと考え方は同じ

	ウィーナー過程	1次関数
基準	標準正規分布 (N (0、1))	y = x
定数	α・d t(左右にシフト)←平均の変化	e (上下にシフト)
傾き	b ← 分散の変化	С

株価の動きをモデル化しよう!



ウィーナー過程の一般式と同じ

:株価の動きは一般化したウィーナー過程と同じ動きをする (ウィーナー過程の a , b をそれぞれ上の式のように a (X , t), b (X , t) の関数に置き換え たものを伊藤過程と呼ぶ)

○伊藤のレンマの導出

関数 f(X, t) の変化量 Δf は 2 変数関数のテイラー展開(5, 6 ページで説明)を利用する(株価(X)の影響を受ける関数なのでオプションを表す関数と考える)と、

$$\Delta f = \frac{\partial f}{\partial X} \cdot \Delta X + \frac{\partial f}{\partial t} \cdot \Delta t$$

$$+ \frac{1}{2} \frac{\partial^2 f}{\partial X^2} \cdot (\Delta X^{\frac{9}{2}} + \frac{\partial^2 f}{\partial X \partial t} \cdot \Delta X \cdot \Delta t + \frac{1}{2} \frac{\partial^2 f}{\partial t^2} \cdot (\Delta t^{\frac{9}{2}} + \cdots)$$

と表せる

ここでΧが伊藤過程に従っているのでΔXのところに

a
$$(X, t) \cdot \Delta t + b (X, t) \cdot \Delta Z$$
 を代入する

$$\begin{split} \Delta & \text{ f } = \frac{\partial \text{ f}}{\partial \text{X}} \big\{ \text{a } (\text{X}, \text{ t}) \cdot \Delta \text{ t + b } (\text{X}, \text{ t}) \cdot \Delta \not\triangleright \frac{\partial \text{ f}}{\partial \text{ t}} \cdot \Delta \text{ t} \\ & + \frac{1}{2} \frac{\partial^2 \text{ f}}{\partial \text{X}^2} \big\{ \text{a}(\text{X}, \text{ t}) \cdot \Delta \text{ t + b } \text{X}, \text{ t}) \cdot \Delta \not\triangleright 2 \\ & + \frac{\partial^2 \text{ f}}{\partial \text{X} \partial \text{ t}} \big\{ \text{a } (\text{X}, \text{ t}) \cdot \Delta \text{ t + b } (\text{X}, \text{ t}) \Delta \not\triangleright \Delta \text{ t + } \frac{1}{2} \frac{\partial^2 \text{ f}}{\partial \text{ t}^2} \cdot (\Delta \text{ t}) + \dots \big\} \end{split}$$

したがって

$$\begin{split} &\Delta \ f = \frac{\partial \ f}{\partial X} a \quad (X, \quad t) \quad \cdot \Delta \ t \quad \frac{\partial \ f}{\partial X} b \quad (X, \quad t) \quad \cdot \Delta \ Z \quad \frac{\partial \ f}{\partial t} \cdot \Delta \ t \\ &\quad + \frac{1}{2} \frac{\partial^2 f}{\partial X^2} \big\{ a \quad (X, \quad t) \big\}^2 \cdot \Delta \ t^2 + \frac{1}{2} \frac{\partial^2 f}{\partial X^2} \big\{ b \quad (X, \quad t) \big\}^2 \cdot \ (\Delta \ Z \,)^2 \\ &\quad + \frac{1}{2} \frac{\partial^2 f}{\partial X^2} \cdot 2 \cdot a \quad (X, \quad t) \quad b \quad (X, \quad t) \quad \cdot \Delta \ t \quad \Delta \ Z \\ &\quad + \frac{\partial^2 f}{\partial X \cdot \partial \ t} a \quad (X, \quad t) \quad \cdot (\Delta \)^2 + \frac{\partial^2 f}{\partial X \partial \ t} b \quad (X, \quad t) \quad \cdot \Delta \ t \quad \Delta \ Z \\ &\quad + \frac{1}{2} \frac{\partial^2 f}{\partial \ t^2} \cdot \ (\Delta \ t \,)^2 + \cdots \end{split}$$

※標準正規分布とカイ2乗分布の性質 ← 上の式をすっきりさせてくれる

Xが標準正規分布N(0,1)に従うとき

X²は平均1、分散2の

標準正規分布の分散と同値

この性質を使って ΔZ を変換してみる

その前に $(\Delta Z)^2$ の平均と分散を求める

 \therefore $(\Delta Z)^2$ は平均 Δ t 、分散 $2 \cdot (\Delta t)^2$ の正規分布に従う

ここで $\Delta t \rightarrow 0$ とすると

 $(\Delta t)^2$ は Δt よりもさらに0に近づくので

 $(\Delta t)^2 = 0$ となり $(\Delta Z)^2$ の分散は0 (つまりばらつきがなくなる)

つまり $(\Delta Z)^2$ の値は平均 Δt に等しくなる

 $\Delta t \rightarrow 0$ のとき

 $(dZ)^{2} = dt$

つまり dZ= \sqrt{dt} と表せる

 $\Delta t \rightarrow 0$ としたとき

$$\Delta t \rightarrow d t$$
 , $\Delta Z \rightarrow d Z \ (=\sqrt{\Delta t})$, $\Delta f \rightarrow d f$
 $(\Delta t)^2 \rightarrow 0$, $\Delta t \cdot \Delta Z \ (=\sqrt{\Delta t}^3) \rightarrow 0$

にそれぞれ置き換えると

$$d f = \frac{\partial f}{\partial X} \cdot a (X, t) \cdot d + \frac{\partial f}{\partial X} \cdot b (X, t) \cdot d \not\equiv \frac{\partial f}{\partial t} \cdot d t$$
$$+ \frac{1}{2} \frac{\partial^2 f}{\partial X^2} \cdot \{b (X, t)\}^2 \cdot d t$$

$$= \left[\frac{\partial f}{\partial X} \cdot a \quad (X, t) \quad \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial X^2} \cdot \{b \quad (X, t)\}^2 \right] \cdot d t + \frac{\partial f}{\partial X} \cdot b \quad (X, t) \cdot d$$
 伊藤のレンマ (公式)

テイラー展開(マクローリン展開)って?

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \frac{f^{(5)}(0)}{5!}x^5 \cdots$$

例
$$f(x) = 7 x^4 - 11 x^3 + 5 x^2 - 3 x + 8$$
 $f(0) = 8$ $f'(x) = 28 x^3 - 33 x^2 + 10 x - 3$ $f'(0) = -3$ $f''(x) = 84 x^2 - 66 x + 10$ $f'''(x) = 168 x - 66$ $f'''(0) = -66 (= -11 \cdot 3!)$ $f^{(4)}(x) = 168$ $f^{(5)}(x) = 0$ $f^{(5)}(0) = 0$

この数値をテイラー展開に代入すると

f (x) =
$$8 - 3 x + 5 x^2 - 1 1 x^3 + 7 x^4$$

となり元の式と同じになる

つぎに2変数関数の場合を考える

関数 f(x, y) が点 (a, b) のまわりで何回も偏微分可能ならば

$$f(a+h, b+k) = f(a, b)$$

$$+ \frac{1}{1!} \left\{ \frac{\partial f}{\partial x} (a, b) \cdot (a + h + a) + \frac{\partial f}{\partial y} (a, b) \cdot (b + k + b) \right\}$$

$$+ \frac{1}{2!} \left\{ \frac{\partial^2 f}{\partial x^2} (a, b) \cdot (a + h - a)^2 + \Box (a, b) \cdot (b + k - b)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} (a, b) \cdot (a + h - a) \cdot (b + k - b) \right\}$$

$$+ \frac{1}{3!} \left\{ \frac{\partial^3 f}{\partial x^3} (a, b) \cdot (a + h - a)^3 + \frac{\partial^3 f}{\partial y^3} (a, b) \cdot (b + k - b)^3 + 3 \frac{\partial^3 f}{\partial x^2 \partial y} (a, b) \cdot (a + h - a)^2 (b + k - b) + 3 \frac{\partial^3 f}{\partial x \partial y^2} (a, b) \cdot (a + h - a) (b + k - b)^2 \right\}$$

$$+\frac{1}{4!} \left\{ \frac{\partial^4 f}{\partial x^4} (a, b) \cdot (a+h-a)^4 + \cdots \right\}$$

 $_{\rm X}$ f (a, b) を左辺に移項すれば $_{\rm A}$ f の式として書き表せる